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COMPUTATION OF STEADY AND UNSTEADY LAMINAR

FLAMES: THEORY

Thomas Hagstrom* Krishnan Radhakrishnan! and Ruhai Zhou _

Abstract

In this paper we describe the numerical analysis un-

derlying our efforts to develop an accurate and re-
liable code for simulating flame propagation using

complex physical and chemical models. We discuss

our spatial and temporal discretization schemes,
which in our current implementations range in order

from two to six. In space we use staggered meshes

to define discrete divergence and gradient operators,

allowing us to approximate complex diffusion opera-

tors while maintaining ellipticity. Our temporal dis-

cretization is based on the use of preconditioning to

produce a highly efficient linearly implicit method

with good stability properties. High order for time
accurate simulations is obtained through the use of

extrapolation or deferred correction procedures. We

also discuss our techniques for computing stationary

flames. The primary issue here is the automatic gen-

eration of initial approximations for the application

of Newton's method. We use a novel time-stepping

procedure , which allows the dynamic updating of
the flame speed and forces the flame front towards

a specified location. Numerical experiments are pre-

sented, primarily for the stationary flame problem.
These illustrate the reliability of our techniques, and

the dependence of the results on various code param-

eters.

1 Introduction

Comprehensive mathematical models of reacting

gases have been known for some time. (See, e.g.,
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[18].) Nonetheless, due to the complexity of the
models, it is necessary to use numerical methods to

extract detailed predictions and evaluate their abil-

ity to faithfully reproduce experimental results. In

this note we review our ongoing efforts to design and

implement reliable numerical methods for the solu-

tion of these complex models. Of course, we are not

the first researchers to attempt to solve these equa-

tions. Of particular note is the work of groups at the

Ballistic Research Laboratory [5], Sandia National

Laboratory [11] and the Naval Research Laboratory

[10]. Nonetheless, some of our approaches differ from
those pursued by other groups and seem worthy of

additional investigation. In the design process, we

have been motivated by potential efficiency in mul-

tidimensional simulations. In this work, however,

we will restrict ourselves to examples in one space
dimension.

2 Models

Our starting point is the equations for conservation

of mass, momentum, energy and species:

Op
0-'-t-+ V. (flu) = 0, (2.0.1)

0u
0--_+ (u-V)u + -1V¢ = lv. Jv, (2.0.2)

P P

0e --iv P-v
0---t+ (u. V)e = • q - -u, (2.0.3)P P

0Yi + v)Y, = -iv- (pY Yd+ (2.0.4)
0t p

Here, p is the density of the gas mixture, u is the

velocity vector, e is the internal energy and Yi, i =

1,..., ns, is the mass fraction of the ith species.

We consider a zero Mach number model, akin to

the incompressible equations for fluid flow. Pre-

cisely, our gas law equation of state takes the form:

'_" Y_ = P(t),pRrF.
i---=l

e= _"_ _,n"ei(T)Yi (2.0.5)
i=1



ei(T) = hi(T) - RT. (2.0.6)

That is, we assume that the pressure, to leading or-

der, is spatially constant. The quantity ¢ is the

spatially varying pressure perturbation. It is only

retained in the momentum equation. In a closed do-

main, an additional equation is needed to specify the

temporal evolution of P. In an open domain, how-

ever, we may assume that P is constant. Detailed

mathematical analyses of these equations and their

derivation are given in [13, 8].

There are both advantages and disadvantages to

using the zero Mach number system. The primary

advantage is in the design of time stepping strate-

gies, as large imaginary eigenvalues of the spatial

operators are suppressed. Disadvantages are its re-

stricted applicability to problems where the Mach

number remains small and the necessity to solve ad-
ditional equations to simulate sound production.

To complete the problem specification, we must

describe the computation of the reaction rates, r/,
the diffusion velocities, Vi, the heat flux, q, the en-

thalpies, hi, and the viscosity coefficients. Our pro-

grams are designed to accommodate any reasonable

specifications of these quantities without requiring

basic changes in the algorithm. In this work the
species production rates were computed using the

procedures (and rate coefficient expressions) built

into the NASA Lewis kinetics code LSENS [16]. The

NASA Lewis polynomial expressions [9] were used

to calculate the thermodynamic properties, and the

routines for the transport properties were adapted

from the Sandia 1-D flame code [11]. The species

diffusion velocities were obtained by solving the mul-

ticomponent diffusion equation, which is a matrix

equation--see equation El8 in [18].

3 Plane Flames

A fundamental problem of computational combus-

tion is to determine flame speeds and species profiles,

or to establish the nonexistence of the flame, given

the mixture composition, temperature and pressure.

Mathematically, the plane flame is a traveling wave

solution of the governing equations. That is, if x is
the coordinate normal to the flame front and v is

the flame speed we seek a solution of (2.0.1)-(2.0.4)
which is a function of z = x + vt. Equivalently,

we may make a Galilean transformation and seek a

steady solution depending on x alone with a nonva-

nishing x-velocity, u -- v, at x = -ee.

Generally, boundary conditions for traveling wave

problems involve specifying limiting rest states at

4-oo. This description does not strictly apply to the

plane flame problem, as there is no rest state as-

sociated with the unburnt gas. (This is sometimes

called the cold boundary difficulty.) Here we sim-
ply impose an unburnt state, that is fix the unburnt

fuel mixture, Yi,0, temperature, To, and pressure, P0-

This raises doubts concerning the strict existence of

the unbounded domain solution. However, so long

as the unburnt state is an approximate equilibrium

(that is the reaction rates are sufficiently small), we

expect that our truncated problems do possess solu-

tions which correctly model the physics.

True equilibria, wliich will define the burnt state,
are defined by the ns equations:

ri(Yl,b,... , Yn,,b, Tb) = O. (3.0.7)

As the number of unknowns exceeds the number

of equations by one, it is reasonable to expect

that a one-parameter family of equilibria exist. To

uniquely determine the burnt state, we note that un-

der the zero Mach number assumption, an additional

conservation law for the enthalpy can be derived:

q + p(u + v + Y )Y hi = o. (3.0.s)

(Here hi is the enthalpy of species i.) Integrating

this equation from the unburnt to the burnt state,

imposing the vanishing of the gradients and, hence,

of q and Vi in these states, and taking into account

mass conservation, we arrive at the additional rela-
tion:

n s n$

E Yi,ohi,o = E Yi,bhi,b. (3.0.9)
i=l i=1

Supplementing (3.0.7) by (3.0.9), the burnt state is

finally determined. In practice, the chemical equilib-

rium state is not computed using equations (3.0.7)

and (3.0.9). It is instead obtained by minimizing the

Gibbs function--for details see [9, 16].

An additional property of traveling wave solutions

is their translation invariance. That is, given any

solution a new solution can be obtained by adding
any constant to the independent variable, effectively

translating the profile. Mathematically, this implies

that the space derivative of the solution is a nullfunc-

tion of the linearized equations. To fix our profile

in space we impose an additional phase condition.

Many such conditions are possible. (For an interest-

ing discussion of the discretization theory of travel-

ing wave problems see Beyn [4].) What is essential is

that the additional condition be nonvanishing when
applied to the derivative of the solution. We choose

a temperature normalization:

T(xh) = Th, To < Th < Tb. (3.0.10)



Forthisto beeffectivewemusthave:
dT

> 0. (3.0.11)

So long as T -- Th occurs within the flame front,

(3.0.11) is expected to be valid, and has been in all
our experiments. Later we will discuss a new method

for dealing with the phase condition in the context of

a time stepping procedure for computing the flame.

4 Spatial Discretization and

Adaptivity

We approximate spatial derivatives using second to
sixth order central differences, switching to lopsided

schemes where necessary near the boundaries. We

expect that higher order methods will prove to be
more efficient, particularly when the physical mod-

els are complex. In these cases, the overhead associ-

ated with the use of higher order differences is small

compared with the cost of evaluating various phys-

ical quantities at each point. Hence, any reduction
in the number of mesh points results in a reduction

of computing time.

Two distinct spatial difference formulas are em-

ployed. The first, which is denoted Dg and used to

approximate first order terms in the equation, takes
a function defined on a uniform grid and produces

approximate derivatives on that grid. The second

operator, Dh, approximates derivatives midway be-

tween gridpoints. These operators are composed to

approximate second order derivatives on the grid.

For example, we approximate the species conserva-

tion equations (2.0.4) by:

uDgYi = --1Oh ((Ihp)(IhYi)Vi) + r_, (4.0.12)
P

where In is an interpolation operator of appropri-

ate order producing function values midway between

gridpoints from values on the grid. The diffusion ve-

locities are computed, again midway between grid-

points, by:

V_ = V_(DhYj,DhT, IhYj,IhT). (4.0.13)

The reason for staggering the grids in this way is

to guarantee the ellipticity of the resulting discrete

diffusion operators. The only grid functions anni-

hilated by Oh are constant, whereas Dg also anni-
hilates the function (-1) j where j is a grid index.

Therefore, the Fourier transforms of second order

operators formed by composing Dh with itself are

always large for large wavenumbers while those ob-

tained by composing Dg with itself decrease to zero

as the wavenumber approaches zr/Ax, that is as we

approach the largest wavenumber representable on

the grid.

For the one-dimensional problems considered

here, the essential length scales are the computa-

tional domain length, L, which we cannot make too

small without using far more sophisticated bound-

ary treatments, and the width of the flame zone.

In practice the ratio of these is sufficiently small

to merit an adaptive mesh strategy. Currently, we

use a parametrized family of coordinate maps. This

strategy has been successfully employed and ana-

lyzed by Bayliss and coworkers [1, 2] in the context
of spectral simulations of simpler combustion mod-

els. The maps we use are slightly different. Precisely,
we write:

1 ( (1 - e)(y/_)P'_ (4.0.14)x=x,+ 9"y e+ )'

and employ a uniform grid in y. For e < 1 there is a

clustering of gridpoints near x = x_. Using the tem-

perature as our monitor function, we choose xt to
coincide with the location of the maximum deriva-

tive of T and choose e according to the ratio:

Tb- To
- (4.0.15)

L(T=)ma_

Throughout our simulations we have chosen p = 8.

The parameters 9' and /_ are chosen to scale the

length of the y-interval and to guarantee that suffi-

ciently many points are in the refinement layer. Our
exact formulas are:

1 + 3a. L. (4.0.16)
/3 = (1 + 3e) -1, 9' = 4-"--'_

A defect of the very simple mapping described

above is its inability to handle multiple fronts. An

alternative method we have used which is capable of

handling multiple fronts is given by the mapping:

/o'( )y A l+_[Txl + (1 _)[Txzil/2 112-- dx.

(4.0.17)

where A is a normalization parameter and 0 < _ < 1.

In all cases we use static rezoning, that is update

the mesh after some fixed number of time steps and

interpolate the solution onto the new mesh. Each

of these methods would require extensive modifica-

tion for use in multiple dimensions. Therefore, a

more flexible approach such as the AMR techniques

of Berger and coworkers (e.g. [3]) will be considered.

5 Temporal Discretization

It is well known that the equations of reacting flows

may be stiff when realistic reaction mechanisms are



included. Therefore,if an explicittemporaldis-
cretization were employed, the time step could be

severely restricted by stability requirements. Fully

implicit discretizations, on the other hand, require

the solution of a discrete approximation to a nonlin-

ear elliptic system at each time step. Solving such
a problem is potentially quite expensive in multiple

dimensions. Here we take an intermediate approach,

based on the concept of preconditioning.

Consider, for simplicity, a system of ordinary dif-

ferential equations:

du

d-_ = F(u). (5.0.18)

Introduce a preconditioning matrix, G(u). A first

order approximation to (5.0.18) is given by:

(I - AtG( (t)))w = AtF(u(t)), (5.0.19)

u(t +  Xt)= u(t) + w. (5.0.20)

For reasons of efficiency, we want to choose G so that

(5.0.19) may be easily solved. To study the stability
of the approximation, we consider the special case
F = Ju. Then we have:

u(t+At) = (I-AtG)-l(I+At(J-V))u(t) (5.0.21)

so that the method is stable if and only if for some
subordinate matrix norm:

II(I-AtG)-'(I+At(J-C))I] < 1. (5.0.22)

As a simple example, suppose J is a discrete approxi-
mation to a variable coefficient multidimensional dif-

fusion operator:

J = EDh,j(cri(x)Dh,j), (5.0.23)
J

where Oh are as discussed above. Then it is possible
to take:

(I - Ate) = H(i - At_jo+,jo_ _) (5.0.24)
J

for suitably chosen #j. Then we only need to solve
small tridiagonal systems, no matter what stencil

width our actual difference approximations employ.

The time stepping scheme, as outlined above, is

only first order. This is sufficient for the compu-

tation of stationary flames, where time-stepping is

simply used to generate an initial approximation for

Newton's method. For time accurate simulations, on

the other hand, it is more efficient to use a higher
order method. There are two distinct approaches we

have considered for automatically producing higher

order time advancement procedures based on the

preconditioning strategy: extrapolation, as in the

ode solver SEULIM (e.g. [6]), and iterated deferred

correction, as discussed in [7]. As the second ap-

proach is less familiar, and is the one employed in

the example given below, we describe it briefly.

Suppose u(tn) is our approximate solution at t =

tn and that we wish to compute u(tn+l). Recall the

formula obtained by integrating (5.0.18) from tn to

an arbitrary time, t:

u(t) = U(tn) + F(u(s))ds. (5.0.25)

Choose nodes (typically of Gauss, Radau or Lobatto

type),

tn <_ Sl < s2 < ... <Sm <_ tn+1. (5.0.26)

Let the pth approximate solution on the nodes be

given by:

(5.0.27)

where the inital approximation is computed by

(5.0.19),(5.0.20) with At replaced by s1+1 - sj. To

compute corrections, define the interpolant, QP(s),

to (sj, F(v_.)) and the residual:

//P = u(tn) + QP(s)ds - v s.es P (5.0.28)

Then solve:

(I o p- - = (5.0.29)

ks(F(vf - + -

kj = sj+_ - sj, (5.0.30)

vp+ 1j (5.o 1)

The overall method order increases by one at each

iteration, up to a maximum determined by the inte-
gration scheme. Assuming this order is not less than

l, an lth order approximation to U(tn+l) is given by:

$_+lu(tn+l) = u(tn) + Qt-X(s)ds. (5.0.32)
J tn

Note that our semidiscretized system is in fact a

differential-algebraic rather than a differential equa-

tion. Formally, the index of this system is three.
In particular, no equation for the the time deriva-

tive of the pressure variation, ¢, is given. To obtain
such an equation, one must differentiate the con-

straint, namely the equation of state (2.0.5), three
times. (The first differentiation produces Pt; substi-

tuting for Pt using (2.0.1), the second differentiation



producesut; finally, substituting for ut using (2.0.2)

yields an equation for ¢ which can be differentiated

and solved for Ct-) In one space dimension, however,

(2.0.2) and, hence, ¢ may be eliminated. Then we

have no equation for ut, and the index, following the

same reasoning as above, is reduced to two.
In the current code, we only apply our time-

stepping procedure to the spatially discretized ap-

proximations to (2.0.3) and (2.0.4). The density is

computed using (2.0.5) and the velocity is updated

using (2.0.1). For stationary flames this reduces to:

Po (5.0.33)tt_ --'V,

P

where v is the velocity at x -- -oc. For time ac-

curate approximations we found it difficult to use

(2.0.1) directly. Instead, we replace Pt by first ex-

pressing it in terms of et and Yi,t and then using

(2.0.3) and (2.0.4) to eliminate all time derivatives.
This results in a somewhat complicated expression,

which is nevertheless easily integrated for u.

In our code, G is chosen by replacing the heat

conduction and species diffusion terms in equations

(2.0.3) and (2.0.4) by simplified physical approxima-

tions and by using second order differences. It also
includes the exact Jacobian of the reaction rates.

Finally, we note that the time steps are auto-

matically adjusted, within preset upper and lower

bounds, according to the relative change in the so-

lution.

6 Stationary Flames

As discussed in Section 3, the plane flame prob-

lem is to compute stationary solutions to equations

(2.0.1)-(2.0.4) along with the normalization condi-

tion (3.0.10) and the boundary conditions:

(e, Y_) -_ (e0, Yi,0), x --+ -oo, (6.0.34)

(e, Y_) -+ (eb, Yi,b), x -+ oo, (6.0.35)

u -+ v, x -_ -co. (6.0.36)

Recall that the state (e0,Y/.0) is specified, the state

(eb, Y/,b) is computed given (eo, Yi,0) by minimizing

the Gibbs function, and the flame speed, v, is to be

detrmined as part of the calculation.

A direct approach to the computation is to trun-
cate the infinite domain by a finite domain, replac-

ing (6.0.34)-(6.0.36) by approximate boundary con-
ditions at the artificial boundaries, then to approxi-

mate the spatial derivatives by differences on a (gen-

erally nonuniform) mesh, and finally to use some
variant of Newton's method to solve the resulting

algebraic system. The problem here is in the last

step, as the convergence of Newton's method is only

guaranteed for a sufficiently accurate initial guess,
which seems difficult to automatically generate for

this problem. A more reliable alternative is to use

a time-stepping procedure in place of Newton iter-
ations. In this approach one makes use of the ap-

parently large dynamical basin of attraction of the

plane flame solution. Disadvantages associated with

standard time-stepping procedures include slow con-

vergence to steady state, an inability to fix the flame

front, and difficulties in determining a precise speed.
In this work we use a hybrid approach. We begin

with a novel time-stepping procedure, which allows

us to dynamically compute a flame speed and to

modify the dynamics to push the front towards its
normalized location. Similar ideas have been pro-

posed by Sermange [17], but ours differ in the details.

Second, either after the time derivatives become suf-

ficiently small or after a maximum number of time

steps are carried out, we switch to a damped Newton

iterator to achieve final convergence.

The time-stepping procedure is most easily ex-

plained in a general setting. Consider the nonlinear,

algebraic eigenvalue problem:

F(w) - vSw = O. (6.0.37)

Here v is the eigenvalue and S is a square matrix.
Discrete approximations to the plane flame problem

take this form when the velocity, u, is replaced using

(5.0.33) and p is eliminated using (2.0.5). Equation

(6.0.37) then represents the discrete approximation
to (2.0.3)-(2.0.4) multiplied by p. The matrix S is

the discrete derivative operator.
As mentioned above, solutions to the plane flame

problem are only unique up to translation. This

implies that the equations linearized about a plane
flame solution have a nullfunction which is the

derivative of the solution itself. Moreover, we de-

termine a unique solution by imposing an additional

normalization condition (3.0.10). We represent our

discrete approximation to (3.0.10) by

N(w) = 0, (6.0.38)

where N is scalar valued. Corresponding to the

translation invariance, we assume that if w* is the

solution of (6.0.37)-(6.0.38), then the matrix:

A - DF(w*) - vS, (6.0.39)

has 0 as a simple eigenvalue with normalized eigen-

vector q0 = Sw*/[ISw*][. (This assumption is gen-

erally false after domain truncation. However, drop-

ping it complicates the analysis beyond the scope of



this note.) We further assume that w* is dynami-

cally stable, that is that all other eigenvalues, Aj, of
A, have negative real part. Moreover, we impose the

nondegeneracy condition:

Dg(w')Sw* > 0. (6.0.40)

Note that if the left-hand side of (6.0.40) were zero,

the normalization would fail to guarantee a unique

solution. In our case, (6.0.40) is equivalent to
(3.0.11).

Our time-stepping procedure is to replace (6.0.37)
by the dynamical problem:

wt = G(w), (6.0.41)

with G defined by:

G(w) = F(w) - (aa(w) + #N(w))Sw, (6.0.42)

where @ is a scalar function and lz > 0 is a damping

parameter. In order for w* be a rest point of the

new system, it is necessary to guarantee that:

• (w*) = v. (6.0.43)

This we accomplish by choosing:

¢(w) = (Sw)TRF(w)
(Sw)TR(Sw) , (6.0.44)

for some symmetric semidefinite matrix R. In our

current code, R is simply the projection onto the

internal energy.

The effectiveness of our approach depends on the

spectrum of DG(w*), which must lie in the left half-

plane. By direct computation we find:

DG(w*) = (I- (sw')(sw')rR_ A (6.0.45)(s,_.)_n(sw.)J

-_(Sw')ON(w*).

Let Q be an orthogonal matrix whose first column

is qo. Then we have:

0 _T )QTAQ= 0 A (1) ' (6.0.46)

and

QTDG(w.)Q=(A o z/T)0 A (1) ' (6.0.47)

A0 = -I_DN(w*)Sw* < 0. (6.0.48)

Therefore, the spectrum of DG(w*) is given by the

eigenvalues of A 0), which by (6.0.46) are also the

nonzero eigenvalues of A, and A0. Hence, the local

dynamic stabilty of w* is assured.

Finally, we consider the boundary conditions im-
posed at the artificial boundaries introduced to trun-

cate the infinite domain. At the cold boundary we
simply impose the Dirichlet conditions:

(e, Y/) = (e0, Y/,0). (6.0.49)

Our justification for this is the rapid exponential de-

cay to this state which we observe in the compu-
tations. At the hot boundary, where the observed

decay rates are much slower, we impose the condi-

tions analyzed by Loh_ac [12] for advection-diffusion
equations:

e== = Y,,=_ = 0. (6.0.50)

Although our experiments indicate that these con-

ditions do provide sufficient accuracy, more sophis-

ticated conditions could be used and might lead to

improvements. See [4] for a detailed discussion.

7 Results

In this section we present the results of some numer-

ical experiments with our code. The vast majority
of these involve computations of a stationary, sto-

ichiometric hydrogen-air flame at a temperature of

300 degrees Kelvin and atmospheric pressure. Our

mechanism includes 13 species.

This problem is rather standard, and was included

in a series of benchmark problems in laminar flame

computations sixteen years ago [15]. We note that
our mechanism does differ from the one used there.

Our complete set of results is summarized in Table 1.

Our computed flame speeds vary between 235.77cms
and 239.08cms. If the somewhat less reliable sixth

order results are ignored, this variance is reduced
from 236.86 to 237.92 - i.e. about one-half of one

percent. It is interesting to note that these results

show far better agreement with the experimental re-

sults of Milton and Keck [14] than do any presented

in [15], though this no doubt says more about the
accuracy of our models than it does about the merits

of our code. Plots of the temperature, velocity, and

various mole fractions for a typical case (fourth or-

der, 149 points, domain width L = 1) are presented
in Figures 1 and 2.

In all cases we tried except one, the code success-

fully ran to completion. (The one failure was with

the sixth order differencing and our coarsest mesh,

n = 49.) The maximum number of time steps was

set to 7000 and the code automatically switched to
damped Newton iterations whenever:

Ildwldtll
__ 5sec -1. (7.0.51)

NwN
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(Herew is the complete discrete solution.) The con-

vergence criterion for Newton's method was a rela-

tive change less than 10 -5 . This criterion was not

always achieved, in which case the final estimated
relative error is listed in the tolerance column. Such

failures to fully converge are most likely due to a

highly ill-conditioned Jacobian. Note that Newton's

method fails to converge at all if the initial con-

ditions for the time-stepping are used as its initial

guess.
Mesh Refinement: Results are shown for varying

numbers of mesh points and various orders. Fixing

all other parameters, the results clearly converge un-
der refinement.

Varying Order: Both the second and fourth order

codes show consistent convergence behavior. How-

ever, fixing all other parameters, the flame speeds

computed using the second order code are slightly

smaller. One would, of course, hope for even better

agreement here. Again this may be attributable to

conditioning problems. The results for the sixth or-

der code are a little worse, at least as judged by its

convergence under mesh refinement. It is possible
that the sixth order method is more susceptible to

stability problems due to the large one-sided stencils

it uses near the boundaries. It may be necessary to

use some additional mesh clustering at the boundary

to improve its performance.

Varying Domain Length_ L: We have computed
solutions on both a small domain, L = lcm, and

a large domain, L = 10cm. Again, for the second
and fourth order codes there is excellent agreement

(about 1/20 of one percent) between the results on
different domains. This indicates that our artificial

boundary conditions are adequate for the domain

lengths considered.

Varying Xh: Fixing our domain to be x E [0, 1],
we used the fourth order method with 149 points

to compute solutions with Xh varying from 1/4 (our

standard value) to 3/4. The flame speed varied be-

tween 236.86 and 237.90. Results for xh E [1/4, 1/2]
showed far less variance. We expected this, as the

decay rate of the solution to the unburnt state is far

greater than its decay to the burnt state.

Varying _: We also varied the damping parameter,

/4 with the fourth order method, xh = 1/4, L = 1
and n = 149. There were significant changes in the

number of time steps required, with the best results

obtained with /_ = 1000. Surprisingly, the flame

speeds also varied somewhat. Note that varying #

only changes the initial guess from the point of view
of the Newton iterator. The discrepancies in the

results are another indication of ill-conditioning.

Time Accurate Simulations: We have, at this

time, far less experience running our code for time-

dependent problems. Therefore, we include only one

preliminary result. It involves using the stationary

flame profile as initial data and setting the inlet ve-

locity to zero. The flame then propagates to the

right. From the graphs it is clear that the pro-

file and speed are correctly maintained. The data

shown were obtained using the fourth order method

in space and time with 99 mesh points.

8 Conclusions

Our fundamental conclusion, based not only on the

results shown here, but on numerous others to be

published at a later date, is that our code is both ac-

curate and robust for stationary plane flame calcula-

tions. We must, of course, carry out many more ex-

periments to assess its behavior for time-dependent

and multidimensional problems. The results here do

point to some difficulties in achieving high accuracy,

which are most likely due to poor conditioning. This

issue should be investigated further.
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Appendix

Order L Mesh Pts. zh

2 1 49 L/4 50

2 1 49 L/4 50

2 I 74 L/4 50

2 i 99 L/4 50

2 i 149 L/4 50

2 1 199 L/4 50

2 1 249 L/4 50

4 1 49 L/4 50

4 1 74 L/4 50

4 1 99 L/4 50

4 1 149 L/4 50

4 1 199 L/4 50

4 1 249 L/4 50

6 1 74 L/4 i000

6 1 99 L/4 I000

6 i 149 L/4 I000

6 1 199 Z/4 1000

4 1 149 L/4 i0

4 1 149 L/4 250

4 1 149 L/4 500

4 1 149 L/4 I000

4 1 149 L/4 2000

4 1 149 L/3 I000

4 I 149 L/2 1000

4 1 149 2L/3 1000

4 l 149 3L/4 i000

2 i0 999 L/4 50

2 10 1999 L/4 50

2 10 2999 L/4 50

4 10 999 L/4 50

4 i0 1499 L/4 50

4 10 1999 L/4 50

6 I0 999 L/4 1000

6 10 999 L/4 50

6 10 1499 L/4 50

6 10 1999 L/4 1000

6 10 1999 L/4 50

Table I: Summary of

Time Steps Tol.
1514 9 x I0 -4

1514 9 x i0 -4

2342 1 x i0 -5

1022 1 x 10 -5

1417 1 x 10 -s

1845 1 x 10 -b

1838 1 x 10 -5

7000 1 x i0-s

3503 i x i0-5

2032 1 x 10-5

1550 1 x i0-5

1507 1 x 10-5

1525 1 x 10-5

2716 1 x 10-5

1089 1 x 10-5

714 2 x 10-4

775 1 x I0-5

2524 1 x I0-s

1023 1 x I0-5

799 1 x I0-s

768 1 x 10-5

903 1 x 10-5

780 1 x 10-5

759 i x I0-s

766 1 x I0-b

735 1 x 10-5

5434 1 x 10-5

5352 1 x 10-5

5670 1 x 10-5

7000 1 x 10-5

7000 1 x i0-5

5381 1 x 10-5

1517 1 x 10-5

5030 1 x 10-5

5713 1 x 10-5

1722 1 x 10-s

5313 1 x 10-5

Results

V

237.35

237.35

237.21

237.32

237.46

237.47

237.46

237.43

237.81

237.41

237.92

237.82

237.78

238.52

236.16

235.64

238.61

236.91

237.96

236.86

236.86

236.88

237.10

236.98

237.90

237.63

237.31

237.48

237.50

236.86

237.92

237.92

235.77

236.09

238.81

236.13

239.08
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Mole fraction of species H202
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